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Abstract—A discussion of the variation of the heat lost from a fin is presented the root temperature of
whichis T = T, +acos” (ny’/2]),0 < m < 5, and surface convection coefficients of which are constant but
unequal. The range of parameters are 0 < B, € B, < 1, B, =0.01, 0.1, 1.0 where B, and B, are the Biot
numbers of the top and bottom surfaces, respectively. A fin justification criterion (fin heat loss greater than
or equal to three times the no-fin heat loss) is used to discuss fin effectiveness. The results are (1) the heat
lost from the fin decreases as m increases, a > 0; (2) tip Biot number is not an important factor in heat
lost for large B, and B, and (3) as a increases (m constant) the heat lost increases almost linearly.

INTRODUCTION

A coMmMon simplification made when analyzing an
extended surface is that the temperature variation
within the fin is considered to be one-dimensional.
Many papers [1-7] have shown this one-dimensional
approach, although convenient, may cause error
under certain physical conditions {e.g. when the con-
vection coefficient, A, is large compared to the fin
material thermal conductivity). Typically the validity
criterion is described by the root Biot number mag-
nitude ; for constant 4, the one-dimensional assump-
tion is that the Biot number, based on the half thick-
ness of the fin, must be less than 0.1. Another situation
where the usual one-dimensional assumption may be
in error is when the convection coefficients of the top
and bottom surfaces are not equal. Finally, the actual
base temperature of the fin is not really constant as
usually assumed in many analytical works [8-11].

The effort of the study reported here was directed
at determining the variation of the heat lost from a
fin for a non-constant root temperature, 7= T, +
acos™ {ny’j2]), m=0-5, when the convection
coeflicients of all surfaces are constant but not equal
and thermal radiation effects are neglected. So the
purpose of this paper is to provide insight into the
effects of non-constant root temperature and the effect
of unequal top, bottom and tip surface convection
coefficients on the heat lost from a fin of rectangular
profile.

The analysis is based upon the usual assumptions
[12]:

(1) The thermophysical properties, the heat transfer
and the temperature distribution are independent of
time.

(2) The fin material is homogeneous and isotropic.

(3) There are no heat sources within the fin.

(4) Newton’s law of cooling is valid.

In describing the convection characteristics, the
Biot number, B(= hl/k), will be used rather than the
convection coefficient, with the restrictions being (1)
0<B,<B,<1; (2 B, =001, 01, 1.0; (3
0< B, €£1.0 and (4) the non-constant root tem-
perature variation factor b = a/f, varies from —0.5
to 0.5. Note, the subscripts of the Biot numbers, 1, 2
and 3, denote the top, bottom, and tip surfaces of the
fin, respectively. For the quantitative results of this
study, the length to one-half the root dimension of
the fin was arbitrarily selected to be 5 and the heat
lost from the fin is denoted by a non-dimensional
form, Q/k8,.

TWO-DIMENSIONAL ANALYSIS

In the case of a two-dimensional rectangular fin
and constant physical properties, the equation which
describes the temperature profile, deduced from the

first law of thermodynamics, is
T N T 0 -
ax? oyt T

The boundary conditions for the fin illustrated in Fig.
1 are

Ty’
x=0,T=T,+acos” S5F 2
-y <!
or
X =L,~k==hm{T—-T,) 3
Ox
orT
yo=1, =k = h(T—T,) @
oY , ;
oT 0<x'<L
Y= —l,ké;; = h(T-T.) (5)

Note from Fig. 2 the versatility of the root boundary
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m exponent of the non-constant root
temperature factor

B,  fin top surface Biot number. & /jk

B, fin bottom surface Biot number, A,//k

B,  fin tip surface Biot number, /,//k

B,  root surface Biot number, A, /jk

h,  fin top surface convection coefficient

h>  fin bottom surface convection coefficient

h;  fin tip surface convection coefficient

h,  root surface convection coeflicient

NOMENCLATURE
a maximum root depression (clevation) Q heat loss by the fin per length along the
temperature root under steady-state condition
b a/0, Wm™1

fin temperature

fin root temperature

ambient temperature

along the fin variable (root to tip), <L
X'l

across the fin variable, <|/|

VL.

~

%

= e =

Greek symbols

k thermal conductivity 0 adjusted fin temperature excess,
I one half fin thickness (T—-T7T,)
L fin length 0 T.—T,
L L'/l o eigenvalue.
condition in representing various symmetric root tem- 20 b
perature conditions. y=L+B0=0 (%
If we let 0=T-T,. 0y=Ty~T,. L=LJl, @ 0<x<L
=Xl —_— i : (f
x = x'/l and y =)'/l then equation (1) assumes the pe— li B0 =0 (10)
form cy

=0 (6)

while equations (2)—(5) transform to

x=0,0 = 0,+acos” <2> o
p Tr-l<rsl
ax
3
>
EE Tn
ol gt
y=Jp
o T
-] X h3
+ ‘
y=-¢
g l \
h
i 2 ;
x=0 Too x=L

F16. 1. Geometry of a thermally asymmetric, constant cross-
sectional area, rectangular fin,

where B, = hl/k,i=1,2,3andm=0,1,...,5.
Using the separation of variables procedure, the
solution of equation (6) is found to be

{} = 8(} Z ,f‘! (,‘/")f’l(x)Nnm {} 1)
neo
where
S1(y) = cos (4, )+ 4, sin (4,)) (12)
f2(x) = cosh (4, x)+/, sinh (4,x) (13
fy = Dt fanh ) (14)

4, -+ B, tanh (4,1)

8,+0

o,

| ] ] | ]

] 0.2 0.4
Y

FiG. 2. Demonstration of the root temperature variation
dependence upon the parameter m.
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3
¢fiectt D, (14-5) (15)
2bri,
. D, [1+7z2—4i,f cot (A,,)} (16)
bn?
Np=D, {:l+m} (an
127364, cot (4,)
Nos = D, [H (nz—:z;.,f)(%z—u,%)] (18)
3In*h
NnS =
240m°5,b cot (4,)
Dn [’ T wTaner—anesa—an]
Nnm =
bA, T 1
Dap1x ﬂ:z(mj ) +2
. m " m+2 A,
27 sin (4,)I (—2 + ;) r (MZ" - ;)
2N
2sin (4,)
A
Dn= in (21 in (27
[<1+ sin { ,,)) A2 <1 _sin ( ,,))]
A A
(22)
N . tan {4,)—B, _ —A,tan (A4,)+ B,
Ao = Jo+By tan (4,) ~ A,+ B, tan (4,) @3
and
a
b= 0:.

The values of 4, were obtained from the two right-
hand portions of equation (23) using a Newton—
Raphson method.

The heat lost per fin width in this two-dimensional

case is
! oT
Q = J»/ [—‘k‘g?]v= . d}'

VT o0
e

o

~2kBy Y sin (A) fuNom.

n=1

I

24

In determining the usefulness of a fin, comparisons
are usually made with the "no-fin’ or ‘bare wall’ con-
dition. Thus, if no fin were present and the bare wall
between —/and /exhibited the same root temperature
profile, the heat lost per fin would be
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1 n})
=ka00 2+b cos™ ? dy . (25)
-1

Comparisons between equations (24) and (25) may
be used in an effort to determine the usefulness of a
fin. For example, a criterion for a fin to be justified
might be that

Q(no fin) = J hy(T—T,) dy’
!

>3 (26)

RESULTS

4

For eigenvalues, 4,, equation (23) was used for
given B, and B,. When B, is not equal to B,, the
solution to this eigenfunction equation is complicated.
In order to demonstrate this, consider, for example,
that for 4, < 10, there are four eigenvalues in the case
of B, = B, while there are seven eigenvalues in the
case of B, = | and B, = 0. This is illustrated in Figs.
3 and 4. In both of these figures f(/,) is the difference
between the two right-hand portions of equation {23).

A form of the solution is represented in Fig. 5.
Presented in this figure is the variation of the heat
lost from a thermally asymmetric fin for values of
m ranging from 0 to 5, B,/B, ranging from 0 to
1 (B,=001,0.1, 1.0), 5=0.5 and B;=0. B; =0
represents the insulated fin tip case. In all cases, the
heat lost from a fin and the slope of the heat lost curve
with respect to m decreases as m increases for all B,.
Results for the same conditions as in Fig. 5 except that
the fin tip is not insulated (i.e. By = 1) are depicted in
Fig. 6. When B, = 1, the effect of B, on the heat lost
is very small. This can be seen by comparing Figs. 5
and 6 and noting that there is very little difference
between the two sets of B, = 1 curves. The heat lost
from the fin increases a great deal for B, = 0.01 when
this comparison is made. When we further compare
Figs. 5 and 6, another characteristic feature becomes
apparent; the difference in the heat lost with respect
to the change of B,/B, becomes small as B, changes
from O to 1 for small B,. For example, in the case
of m =1, the values of Q(B./B, = Y/Q(B,/B, =0)
are 1.929 at B, =0.01, 1.639 at B, =01 and
1.506 at B, =1, for B;=10 while the values
Q(B,/B, = 1}/O(B.,/B, = 0) are 1.053 at B, = 0.01,
1.286at B, =0.1and 1.49at B, = 1 for B; = 1. From
Table 1, we can also see that Q(B,/B, =1)/
Q(B,/B, = 0) increases as the value of B, decreases
when B; =0 but it decreases as the value of B,
decreases when B; = 1. It is interesting to note that
the change of B; does not affect the slope of the heat
lost curve with respect to m as B changes from 0 to
1 when B, = 1. The slope does begin to change slightly
for low values of m when B, = 0.1, and the slope
becomes noticeably different when B, = 0.01 as B;
changes from 0 to 1.

Superimposed on both Figs. 5 and 6 are the results
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—B, = 1.0

- "'B‘ = 0.1

-==- 8, = 0.0l

F16. 3. The eigenvalues when the top surface Biot number is equal to the bottom surface Biot number.

4 !
2 =
-~ 10
4 1 YU LN UL L A U L B N ¥
-2 -
"4 e
B‘ = | By= 0

FiG. 4. The eigenvalues when the top surface Biot number, B, is not equal to the bottom surface Biot
number, B,.

of applying the suggested justification criterion. In
order to apply the criterion, the resuits of Table 2 may
be used. That is, Table 2(a) is a listing illustrating
equation (25) for various values of m (note the entries
in this table are proportional to the average of the
difference in the root temperature and the ambient
temperature, T,). Table 2(b) presents the special
cases of b =10.5 and B, = B, =001, 0.1 and 1.0.
Note that Table 2 indicates that when (b > 0) the
result is a reduced heat loss as m increases. For the
points on Figs. 5 and 6, B, = 0.01 and 0.1. The results
for B, = | are not included because of their magni-

tude. Although the insulated tip example is not
realistic, a comparison between the fin values and
three times the no-fin values indicate that fins arc
justified for B, < 0.1 and that for B, near 0.1, larger
values of B, are required. Further as the magnitude of
B, and thus B, decreases, even a fin with an insulated
lower surface is justified. The other physical extreme
(B; = 1) is presented in Fig. 6 and results in a slight
relaxing of the range of values of B, for B, = 0.1 for
justification by the criterion. Note also that the heat
lost in the B, = 0.01 case is almost 20 times that of
the no-fin case.
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FiG. 5. The non-dimensional heat lost from a fin for

0<m<50<B,/B, <1,b=05, B, =0 and B, =001,

0.1, 1.0. Included are three times of the no-fin heat loss value
for B, = 0.1(@) and 0.01(A).
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Fic. 6. The non-dimensional heat lost from a fin for

0<m<50<B,/B,<1,b=05 By=1and B, = 0.01,

0.1, 1.0. Included are three times of the no-fin heat loss value
for B, = 0.1(®) and 0.01(A).
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The variation of the heat lost from a fin as the value
of b varies from —0.5 to 0.5 and m varies from 0
to 5 when B,/B, = 0.5 and B; =0 in the cases of
B, =0.01, 0.1 and 1.0 is illustrated in Fig. 7. From
Fig. 7, it can be seen that the heat lost from a fin varies
almost linearly with b for all m and the slope decreases
as m increases. Further, we are lead to believe that the
slope may approach zero as m approaches infinity.
This, of course, is not unexpected since as m increases
the highest temperature in the root of the fin is near
the center (i.e. buried or encapsulated deep in the fin).
Thus the decrease (increase) in the heat lost as m
increases for a given >0 (b < 0) should be ex-
pected. In fact, as m approaches infinity, the average
root temperature is decreased so much that there
is constant heat transfer in the limit. Note further
that, for example, when & =05, the values
of (Qim=1)—Q(m=>5)/Q(m=1) are 0.1124 at
B, =0.01,0.1125at B, =0.1 and 0.1107 at B, = L.
When b = 0.235, the values of (Q(m = 1) —Q{(m = 5))/
Q@m = 1) are 0.0654 at B, = 0.01, 0.0640 at B, = 0.1
and 0.0621 at B, = 1. From these data and the fact
that the slope varies almost linearly, the ratio
(Q(m = 1)—Q(m = 5))/bQ(m = 1) is essentially con-
stant for different values of B, but for the same values
of B,/B,. Finally, as expected, in all examples for
b > 0, the m = 0 case produces the best heat transfer
conditions.

The effect of B, on the heat lost from a horizontal
fin for values of m from 0 to 5 when 5= 0.5 and
B,/B, = 0.5, in the cases of B, = 0.01, 0.1, 1.0 is rep-
resented in Fig. 8. As we can see from this figure, when
B, =1, B, has a negligible effect on the heat lost for
all m. But the effect of B; becomes larger as the value
of B, decreases particularly for small B,. For m = 1
and B, = 1, the heat lost from the fin increases by

Table I. Comparison of the ratio, @(B,/
B, = 1)/Q(B,/B, = 0), with respect to m and
B, when B; = 0 and 1

(B,/B, = 1)]Q(B./B, =)

3= 3=

B, =001 1931 1.055
m=0 B =01 1648 1.295
B =1 1.524 1.509
B, =001 1929 1.053
m=1 B, =01 1639 1.286
B =1 1.506 1.490
B, =001 1931 1.053
m=2 B, =01 1642 1.287
B =1 1.508 1.488
B, =001 1933 1.053
m=3 B, =01 1645 1.289
B, =1 1.509 1.494
B, =001 1934 £.053
m=4 B, =01 1647 1.290
B, =1 1.510 1.495
B, =001 1935 1.053
m=5 B, =01 1648 1.291
B =1 1.511 1.496
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Table 2. Variation of Q(no fin)/B k0, vs m

(a) For general parameter b and B,

m 0 1.2 i

2 3 4 5

O(no fin}/ B k8, 20+6) 2A1+0.762765)  2(1+2bin)

21+52)  21+4b31) AL+3B/8)  2(1+165/15m)

(b) For the cases of b = 0.5 and B, = 0.01,0.1 and 1.0

m 0 12 1 2 3 4 5
O(no fin)/k0, B, = 0.01 0.03 0.028 0.026 0025 0024 002 0.023
B, =0.1 03 0276 0264 0250 0242 0.238 0.234
B =1 3 2763 2.637 2,500 2.424 2.375 2.339
2.8 2.8
i i { i
7 B B.=1 m =
= 1
24 - meo 24 = 0o —
20 |- - 20 b—
2
| i — 2 4
16 - 16 ]
Q - . Q - —
ke
‘2l . A —
o8 -
04 -
- ] L
o R A s I N
0.5 00 0.5 0O 025 05 075 10
b B

Fig. 7. The non-dimensional heat lost from a fin for
—~05<bh=0/0, <05 and 0 <m <5 when B,/B, =0.5
and B, = 0.

only a factor of 1.0012 as B, varies from 0 to I,
while it increases by 1.237 as B, varies from 0 to 1
at B, = 0.1. The most dramatic increase occurs for
B, = 0.01; the increase is by a factor of 5.2 as B,
varies from 0 to 1. In particular, for B, = 0.01 its
increase factor is 3.75 as B, varies from 0 to 0.25 and
increases by only 1.05 as B, varies from 0.75 to 1. So,
at small B,, even though the effect of B, on the heat
lost is important, its effect decreases as B; increases.
These cffects for B, are also expected. That is, in either
the case of decreased top andjor bottom heat transfer
(B; — small numbers, { = 1, 2) or encapsulated high
temperature areas (m — large numbers), the effects of
B, would become more influential. Finally, included
in this figure is the suggested justification criterion for
several cases. Note that for this figure, B, = B;.

F1G. 8. The effect of B, on the non-dimensional heat lost

from a fin for 0 < m < 5 when b = 0.5 and B,/B, = 0.5, for

the cases of B, = 1, 0.1, 0.01. Included are the three times of

the no fin heat loss values for B, = B;andm =0, B, = 0.1

{ yym=5 B =01(").m=0,8 =001{ - -)yand
m=5 8 =001( . ).

CONCLUSION

The results presented produce the following
straightforward conclusions (b > 0):

(1) The non-dimensional heat transfer (Q/k0)
depends in varying degrees upon, B, B,. B,, L, b and
M.

(2) The heat lost from a horizontal fin decreases as
m increases.

(3) The change of the value of B, does not affect
the slope of the heat lost curve for large B, (B, = 1).

(4) Q(B,/B, = 1)/Q(B,/B; =0) increases as the
value of B, decreases when B, = 0 but it decreases as
the value of B, decreases when B; = 1.
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(5) For all m, the heat lost from a fin varies almost
linearly with b and the slopes become smaller as m
increases.

(6) When the value of B, is small, the effect of fin
tip convection coefficient on the heat lost from a fin
is very important but its effect remarkably decreases
as the value of B; increases.

From a fin designer’s standpoint, no drastic changes
in the conditions for justification for the addition of
a fin exists even for this two-dimensional situation.
The top surface Biot number being less than 0.1, for
most values of the bottom surface and tip Biot
numbers, appears to be a valid standard as long as
the root temperature variation is not too dramatic.
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EFFET DE LA VARIATION DE LA TEMPERATURE DE BASE SUR LA PERTE
THERMIQUE D’UNE AILETTE THERMIQUEMENT NON SYMETRIQUE

Résumé—On présente une discussion de la variation de la perte thermique d’une ailette dont la température
de base est T =T, +a cos” (my’/2]), 0 < m <5, et dont les coefficients de convection sont constants
mais différents. Le domaine des paramétres sont 0 < B, < B, < 1, B, =0,01;0.1; 1,0, ou B, et B, sont
respectivement les nombres de Biot des surfaces au sommet et au pied. Un critére (perte thermique avec
ailette supérieure ou égal 4 trois fois la perte sans atlette) est utilisé pour discuter I'efficacité de I'ailette.
Les résutats sont: (1) la perte thermique de l'ailette décroit quand m augmente, @ > 0 (2) le nombre de
Biot au sommet n’est pas un facteur important pour la perte si B, et B, sont grands; (3) quand ¢ augmente
(m constant) la perte thermique croit a peu pres linéairement.

EINFLUSS EINER VERANDERLICHEN FUSSTEMPERATUR AUF DIE
WARMEABGABE EINER THERMISCH NICHT-SYMMETRISCHEN RIPPE

Zusammenfassung—Es werden die Schwankungen der Wirmeabgabe an einer Rippe dargestellt, deren
FuBtemperatur gemil T = T, +acos” (ny’/2]), 0 < m < 5 schwankt, wihrend die Wirmeiibergangs-
koeffizienten bei Konvektion zwar konstant, aber unterschiedlich sind. B, und B, sind die Biot-Zahlen
an den oberen und unteren Oberfldchen, sie schwanken innerhalb 0 € B, < B, < 1, wobei B, =0,01;
0,1 und 1,0. Der Rippenwirkungsgrad wird mit Hilfe eines Kriteriums zur Rechtfertigung von Rippen
diskutiert: danach soll die Warmeabgabe mit Rippe wenigstens dreimal so groB sein wie die Wirme-
abgabe ohne Rippe. Als Ergebnis wird festgehalten: (1) die Warmeabgabe von der Rippe nimmt mit
wachsendem m ab, a > 0; (2) die Biot-Zahl an der Rippenspitze beeinfluit dic Wirmeabgabe fiir grofie
Werte von B, B, nur gering; (3) die Wirmeabgabe nimmt fiir konstantgehaltenes m mit wachsendem a
fast linear zu.

BIIMAHUE WU3IMEHEHHSA TEMITEPATYPbl ¥ OCHOBAHHWS HA TEIUIOITIOTEPU
TEPMHUYECKH HECUMMETPUUYHOI'O PEBPA

Annotamug—OG6cyxkaeTcd H3IMEHEHHE TEIUIONOTEPs pebpa, TemnepaTypa y OCHOBAHMS KOTOPOIro Coc-
tapnger T = T, + a cos™ (ny'/2]), 0 < m < 5, a ko3pPUUUEHTE! TemTOO6GMeHa ABAKIOTCA NOCTOSHHAIMH,
HO HepaBHbIMH. MccnenyeMele mapamMeTphl H3IMEHAIOTCA B AManasoHax 0 < B, < B, < 1, B, =0,01; 0,1;
1,0, rae B, m B,—4ncna BHo cooTBETCTBEHHO BEpXHeH M HHXHeil mosepxHocTei. Kpurtephii o6ocnopa-
HHUs BbIGOpa THNA pebpa (TertonoTepH pebpa B TPH HAH TPH C JIHIUHKMM pa3a 0oJbllle, yeM B cilyuae Oe3
pebep) Hcrionb3yeTcs AIA aHan3a ero 3¢dexTuBHOCTH. [TonyueHsl caenyiome pe3yabTaTsi: (1) Temro-
notepn pebpa yMeHbLIIAIOTCH C POCTOM 3Ha4eHHA m, a > 0; (2) aucno Bro y sepumnst pebpa He okasbl-
BAaeT CYIIECTBEHHOI'O BJIHAHMA Ha TEMJIOMOTEpH NpH GoNblUMX 3HaueHHsX B, u B, u (3) ¢ yBenuueHHeM
3Ha4eHUs g (IPH NOCTOAHHOM 3HAYEHHH M) TEMJIONOTEPH BO3PACTAIOT NIOYTH JIHHEHHO.



