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Abstract-A discussion of the variation of the heat lost from a fin is presented the root temperature of 
which is T = T, -t-a COP (rry’/21), 0 < m $ 5, and surface convection coefficients of which are constant but 
unequal. The range of parameters are 0 < B, 6 E, 4 I, 8, = 0.01, 0.1, I .O where B, and B, are the Biot 
numbers of the top and bottom surfaces, respectively. A fin justification criterion (fin heat loss greater than 
or equal to three times the no-fin heat loss) is used to discuss fin effectiveness. The results are (1) the heat 
lost from the fin decreases as m increases, a > 0; (2) tip Biot number is not an important factor in heat 

lost for large B, and Bz and (3) as a increases (m constant) the heat lost increases almost linearly. 

INTRODUCTION 

A COMMON simplification made when analyzing an 
extended surface is that the temperature variation 
within the fin is considered to be one-dimensional. 
Many papers [l-7] have shown this one-dimensional 
approach, although convenient, may cause error 
under certain physical conditions (e.g. when the con- 
vection coefficient, h, is large compared to the fin 
material thermal conductivity). Typically the validity 
criterion is described by the root Biot number mag- 
nitude ; for constant h, the one-dimensional assump- 
tion is that the Biot number, based on the half thick- 
ness of the fin, must be less than 0.1. Another situation 
where the usual one-dimensional assumption may be 
in error is when the convection coefficients of the top 
and bottom surfaces are not equal. Finally, the actual 
base temperature of the fin is not really constant as 
usually assumed in many analytical works [S-l 11. 

The effort of the study reported here was directed 
at determining the variation of the heat lost from a 
fm for a non-constant root temperature, T = T, + 

a COP (7xy’y’/21), na = O-5, when the convection 
coefficients of all surfaces are constant but not equal 
and thermal radiation effects are neglected. So the 
purpose of this paper is to provide insight into the 
effects of non-constant root temperature and the effect 
of unequal top, bottom and tip surface convection 
coefficients on the heat lost from a fin of rectangular 
profile. 

The analysis is based upon the usual assumptions 
[12] : 

(I) The thermophysical properties, the heat transfer 
and the temperature distribution are independent of 
time. 

(2) The fin material is homogeneous and isotropic. 
(3) There are no heat sources within the fin. 
(4) Newton’s law of cooling is valid. 

In describing the convection characteristics, the 
Biot number, B( = h//k), will be used rather than the 
convection coefficient, with the restrictions being (1) 
0 <B, <B, < 1; (2) B, =O.Ol, 0.1, 1.0; (3) 
0 < B, < 1.0 and (4) the non-constant root tem- 
perature variation factor b = a/flo varies from -0.5 
to 0.5. Note, the subscripts of the Biot numbers, 1, 2 
and 3, denote the top, bottom, and tip surfaces of the 
fin, respectively. For the quantitative results of this 
study, the length to one-half the root dimension of 
the fin was arbitrarily selected to be 5 and the heat 
lost from the fin is denoted by a non-dimensional 
form, Q/kGo. 

TWO-DIMENSIONAL ANALYSIS 

In the case of a two-dimensional rectangular fin 
and constant physical properties, the equation which 
describes the temperature profile, deduced from the 
first law of thermodynamics, is 

2 2 

.g + fl = 0. 
af2 

(1) 

The boundary conditions for the fin illustrated in Fig. 
1 are 

I 
x’=O,T= Tw+acosm z 

( > 21 (2) 
-1<yl<l 

I I l?T 
x = L, -ksi7 = h,(T-TX) 

~ 
(3) 

y,=(,, dT -kw = h,(T-T,) o < x, < L’ 

I 

(4) 

. . . 

y’ = -I,kg = h,(T-T,) (5) 

Note from Fig. 2 the versatility of the root boundary 
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NOMENCLATURE 

u maximum root depression (elevation) v heat loss by the fin per length along the 

temperature root under steady-state condition 

h U/O,, Wm ‘I 
trl exponent of the non-constant root T fin temperature 

ternpe~~turc factor r\* fin root temperature 

B, fin top surface Biot number. h, l/k 7-f ambient temperature 

BZ fin bottom surface Biot number, hJ/k .Y’ along the fin variable (root to tip), d L 

B, fin tip surface Biot number, h,lik .Y x’jl 

BW root surface Biot number, 11,1/k J’ across the fin variable, 6 III 

11 I fin top surface convection coefficient j’ f/L. 
hL tin bottom surface convection coefficient 

hi fin tip surface convection coefficient 

IL root surface convection coefficient Greek symbols 

k thermal conductivity 0 adjusted fin temperature excess, 

I one half fin thickness (T- T, i 
L’ fin length 00 T/T, 
L I>‘:‘1 ‘w eigenvalue. 

condition in representing various symn~etric root tem- ?ff 
1 
I 

pcrature conditions. 
If we let 0 = T-T,. 0, = T, - T,, L = L’]I, 

x = .u’/l and I’ = r’jl then equation (1) assumes the 
form _ 

while equations (Z)-(5) transform to 

(6) 

?’ = 1.7;; +B,lf = 0 

1 
(Y) 

O<X<L 
i?B 

I’= -1,;-&O=O 
Cl’ 

(10) 

whereB,=ir,l/k,i= 1,2,3andm=O, I ,..., 5. 
1Jsing the separation of variables procedure, the 

solution of equation (6) is found to be 

where 

.f’l (Y) = cos (i.,,~!) + A,, sin (A,,.r) 

,f2(.~) = cash (i,>x) +,f;, sinh (&.x) 

FIG. 1. Geometry of a thermally asymmetric, constant cross- I%. 2. Demonstration of the root temperature variation 
sectional area, rectangular fin. dependence upon the parameter rrr. 
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1 
(16) 

Nn, = al 
bn2 

1+ 2fX2 _ pn”) (17) 

Nn3 = 11, 

12n3bl, cot (n,) 
I+ ($ _41,‘)(9$ -42;) 1 (18) 

Nn4 = D, 
3db 

’ + 2(4n2 -i;)(? -1,“) 

Nn, = 
r 240n51,b cot (1,) 

I + (n’ -4/i,2)(9rc2-42,2)(25x2 -4n,2) I (*O) 

Nm = 

(21) 

2 sin (1.) 

(22) 

” - &i-B, tan (;I,) 
.-- (23) 

1, + B, tan f&J 

and 

b=;. 
0 

The values of i, were obtained from the two right- 
hand portions of equation (23) using a Newton- 
Raphson method. 

The heat lost per fin width in this two-dimensional 
case is 

= -2k0, f sin (J.,)f,lv,,. 
“= I 

(24) 

In determining the usefulness of a fin, comparisons 
are usually made with the ‘no-fin’ or ‘bare wall’ con- 
dition. Thus, if no fin were present and the bare wall 
between -1 and I exhibited the same root temperature 
profile, the heat lost per fin would be 

Q(n0 fin) = h,(T- T,) dy’ 

= k&B0 [‘2+bj;, cos” (r;+)dy]. (25) 

Comparisons between equations (24f and (25) may 
be used in an effort to determine the usefulness of a 
fin. For example, a criterion for a fin to be justified 
might be that 

Q --..-- 
Qbo fin) 

3 3. 

RESULTS 

For eigenvalues, i,,, equation (23) was used for 
given B, and B,. When B, is not equal to B2, the 
solution to this eigenfunction equation is complicated. 
In order to demonstrate this, consider, for example, 
that for A, < 10, there are four eigenvalues in the case 
of B, = & whiIe there are seven eigenvalues in the 
case of B, = 1 and B, = 0. This is illustrated in Figs. 
3 and 4. In both of these figures f’(&) is the difference 
between the two right-hand portions of equation (23). 

A form of the solution is represented in Fig. 5. 
Presented in this figure is the variation of the heat 
lost from a thermally asymmetric fin for values of 
m ranging from 0 to 5, BJB, ranging from 0 to 
1 (B, = 0.01, 0.1, l.O), b = 0.5 and B, = 0. B3 = 0 

represents the insulated fin tip case. In all cases, the 
heat lost from a fin and the slope of the heat lost curve 
with respect to m decreases as m increases for all B, . 

Results for the same conditions as in Fig. 5 except that 
the fin tip is not insulated (i.e. B3 = 1) are depicted in 
Fig. 6. When B, = 1, the effect of B, on the heat lost 
is very small. This can be seen by comparing Figs. 5 
and 6 and noting that there is very little difference 
between the two sets of B, = 1 curves. The heat lost 
from the fin increases a great deal for B, = 0.0 1 when 
this comparison is made. When we further compare 
Figs. 5 and 6, another characteristic feature becomes 
apparent; the difference in the heat lost with respect 
to the change of BJB, becomes small as B, changes 
from 0 to 1 for small B,. For example, in the case 
of m = 1, the values of Q(B2/B, = ~)/Q(B?~~, = 0) 

are 1.929 at B, = 0.01. 1.639 at B, = 0.1 and 
1.506 at B, = I, for B, = 0 while the values 
Q(BJB, = l)JQ(B,,!B, = 0) are 1.053 at B, = 0.01, 
1.286 at B, = 0.1 and 1.49 at B, = 1 for Bz = 1. From 
Table 1, we can also see that Q(B?/B, = l)/ 
Q(B2/B, = 0) increases as the value of B, decreases 
when B3 = 0 but it decreases as the value of B, 

decreases when B, = 1. It is interesting to note that 
the change of B, does not affect the slope of the heat 
lost curve with respect to m as B, changes from 0 to 
1 when E, = 1. The slope does begin to change slightly 
for low values of m when B, = 0.1, and the slope 
becomes noticeably different when 8, = 0.01 as 3, 
changes from 0 to 1. 

Superimposed on both Figs. 5 and 6 are the results 
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-6, = 1.0 - -BI 8 0.1 ---- 81 = 0.01 

FIG. 3. The eigenvalues when the top surface Biot number is equal to the bottom surface Biot number. 

B,= I B2= 0 

FIG. 4. The eigenvalues when the top surface Biot number, B,, is not equal to the bottom surface Biot 
number, B2. 

of applying the suggested justi~cation criterion. In tude. Although the insulated tip example is not 
order to apply the criterion, the results of Table 2 may realistic, a comparison between the fin values and 
be used. That is; Table 2(a) is a listing illustrating three times the no-fin values indicate that furs are 
equation (25) for various values of m (note the entries justified for B, < 0.1 and that for B, near 0. I, larger 
in this table are proportional to the average of the values of B, are required. Further as the magnitude of 
difference in the root temperature and the ambient B, and thus Bt decreases, even a fin with an insulated 
temperature, T,). Table 2(b) presents the special lower surface is justified. The other physical extreme 
cases of b = 0.5 and B, = B, = 0.01, 0.1 and 1.0. (B, = 1) is presented in Fig. 6 and results in a slight 
Note that Table 2 indicates that when (h > 0) the relaxing of the range of values of B2 for B, = 0.1 for 
result is a reduced heat loss as m increases. For the justification by the criterion. Note also that the heat 
points on Figs. 5 and 6, B, = 0.01 and 0.1. The results lost in the II, = 0.01 case is almost 20 times that of 
for & = 1 are not included because of their magni- the no-fin case. 
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I * * 9). 0.01 

0 

0 I 2 3 4 5 6 7 

m 

FIG. 5. The non-dimensional heat lost from a fin for 
0 Q )II < 5, 0 < B,lB, G 1, b = 0.5, B, = 0 and B, = 0.01, 
0.1, 1 .O. Included are three times of the no-fin heat loss value 

for B, = 0.1(O) and 0.01(A). 

2.4 

I.6 

0 
4 . . . l i 

01234567 

m 

FIG. 6. The non-dimensional heat lost from a fin for 
0 S m < 5, 0 < BJB, < 1, b = 0.5, B1 = 1 and B, = 0.01, 
0.1, 1 .O. Included are three times of the no-fin heat loss value 

for B, = O.l(@) and 0.01(A). 

The variation of the heat lost from a fin as the value 
of b varies from -0.5 to 0.5 and m varies from 0 
to 5 when B2/B, = 0.5 and B3 = 0 in the cases of 
B, = 0.01, 0.1 and 1.0 is illustrated in Fig. 7. From 
Fig. 7, it can be seen that the heat lost from a fin varies 
almost linearly with b for all m and the slope decreases 
as m increases, Further, we are lead to believe that the 
slope may approach zero as m approaches infinity. 
This, of course, is not unexpected since as m increases 
the highest temperature in the root of the fin is near 
the center (i.e. buried or encapsulated deep in the fin). 
Thus the decrease (increase) in the heat lost as IYI 
increases for a given b > 0 (b < 0) should be ex- 
pected. In fact, as m approaches infinity, the average 
root temperature is decreased so much that there 
is constant heat transfer in the limit. Note further 
that, for example, when h = 0.5, the values 
of (Q(m = I) -Q(m = S))/Qfm = I) are 0. I 124 at 

B, = 0.01, 0.1125 at B, = 0.1 and 0.1107 at B, = 1. 
When h = 0.25, the values of (Q(m = 1) - Q(m = 5))/ 
Q(m = 1) are 0.0654 at B, = 0.01,0.0640 at B, = 0.1 
and 0.0621 at B, = 1. From these data and the fact 
that the slope varies almost linearly, the ratio 
(Q(m = 1) - Q(m = 5))~~Q(m = I) is essentially con- 
stant for different values of B, but for the same values 
of B,/B,. Finally, as expected, in all examples for 
b > 0, the m = 0 case produces the best heat transfer 
conditions. 

The effect of B3 on the heat lost from a horizontal 
fin for values of m from 0 to 5 when h = 0.5 and 
B,/B, = 0.5, in the cases of B, = 0.01, 0.1, 1.0 is rep- 
resented in Fig. 8. As we can see from this figure, when 
B, = 1, B2 has a negligible effect on the heat lost for 
all m. But the effect of B, becomes larger as the value 
of B1 decreases particularly for small B,. For WI = 1 
and B, = 1, the heat lost from the fin increases by 

Table I. Comparison of the ratio, Q(Bz/ 
B, = l)/Q(BJB, = 0), with respect to m and 

8, when B, = 0 and 1 
_. 

Q(Bz/‘B, = l)iQ@z/B, = 0) 
3, = 0 B, = 1 

B, = 0.01 1.931 1.055 
m=O B, =O.l 1.648 I.295 

B, = 1 1.524 1.509 

B, = 0.01 1.929 1.053 
m=l B,=O.l 1.639 1.286 

B, = 1 1.506 1.490 

B, = 0.01 1.931 1.053 
m=2 B, =O.I 1.642 1.287 

B, = 1 1.508 1.488 

B, = 0.01 1.933 I.053 
m=3 B, =O.l I .645 1.289 

B, = 1 1.509 1.494 

B, = 0.01 1.934 I .053 
m=4 B, =O.l 1.647 1.290 

B, = I 1.510 1.495 

B, = 0.01 1.935 I.053 
m = 5 B, =O.l 1.648 1.291 

B, = 1 1.511 1.496 
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Table 2. Variation of Q(no fin)/B,kU, vs m 
(a) For general parameter h and B, 
-_.. _ .“___ -._.. ___~_ ...__“. ._ 

m 0 1:: 1 1 3 4 5 
_. _.~~__ ._.. _ _~~~~_. 

Q(no ~n}~~~~~~~ 2( 1 +h) ?( I+ 0.76~7~~) 2( I + 2b;n) 2(1 +hl2) 2( 1 +4/Y/370 26 1+ 3&8) 2(1+ lW15n) 

(b) For the cxcs of h = 0.5 and B, = 0.01,O.i and i .O 

m 0 I:2 I 2 3 4 5 

Q(no lin)i’kfl,, B, = 0.01 0.03 0.028 0.026 0.025 0.024 0.024 0.023 
B, = 0.1 0.3 0.276 0.264 0.250 0.142 0.238 0.234 
B, = I 3 2.763 2.637 2.500 2.424 2.375 2.339 

1.6 

Q 

keo 
1.2 - 

0.8 - 

o L 
-0.5 0.0 0.5 

b 

m=O 

FIG. 7. The non-dimensional heat lost from a fin for 
-0.5 $ h = u;H, < 0.5 and 0 < m < 5 when BJE, = 0.5 

and B, = 0. 

only a factor of 1.0012 as B, varies from 0 to I, 
while it increases by 1.237 as B, varies from 0 to I 
at B, = 0. I. The most dramatic increase occurs for 
B, = 0.01; the increase is by a factor of 5.2 as B, 
varies from 0 to 1. In particular, for B, = 0.01 its 
increase factor is 3.75 as B, varies from 0 to 0.25 and 
increases by only I .05 as B, varies from 0.75 to 1. So, 
at small B,. even though the effect of B3 on the heat 
lost is important, its effect decreases as B, increases. 
These effects for B3 are also expected. That is, in either 
the case of decreased top and/or bottom heat transfer 
(Si -+ small numbers, i = 1, 2) or encapsulated high 
temperature areas (HZ -+ large numbers), the effects of 
B, would become more influential. Finally, included 
in this figure is the suggested justification criterion for 

0 

k 8, I.2 - 

2.8 

8,= I 

2.4 - 

2.0 

1.6 - 

0.8 

FIG. 8. The effect of B3 on the non-dimensional heat lost 
from a fin for 0 < m $ 5 when h = 0.5 and B,/B, = 0.5, for 
the cases of B, = I. 0. 1, 0.01. Included are the three times of 
the no fin heat loss values for B,, = B3 and )*I = 0. B, = 0.1 
i ). ni = 5. 5, =.= 0.1 (...). 1~1 = 0, B, = c).Ol ( . -) and 

DI = 5, 5, = 0.01 ( . . . +), 

CONCLUSION 

The results presented produce the following 
straightforward conclusions (h > 0) : 

(1) The non-dimensional heat transfer (Q/H,) 
depends in varying degrees upon, B,, B2, B,, L, h and 
nz. 

(2) The heat lost from a horizontal fin decreases as 
nz increases. 

(3) The change of the value of B, does not affect 
the slope of the heat lost curve for large B, (B, = 1). 

(4) Q(BJB, = l)/Q(BJB, = 0) increases as the 
value of B, decreases when Bi = 0 but it decreases as 

several cases. Note that for this figure. B, = B,. the value of B, decreases when B, = 1. 
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(5) For all m, the heat lost from a fin varies almost 
linearly with h and the slopes become smaller as m 

increases. 
(6) When the value of B, is small, the effect of fin 

tip convection coefficient on the heat lost from a fin 
is very important but its effect remarkably decreases 
as the value of B3 increases. 

From a fin designer’s standpoint, no drastic changes 
in the conditions for justificatjon for the addition of 

a fin exists even for this two-dimensional situation. 
The top surface Biot number being less than 0. I, for 

most values of the bottom surface and tip Biot 
numbers, appears to be a valid standard as long as 
the root temperature variation is not too dramatic. 
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EFFET DE LA VARIATION DE LA TEMPERATURE DE BASE SUR LA PERTE 
THERMIQUE D’UNE AILETTE THERMIQUEMENT NON SYMETRIQUE 

R&urn&On prksente une discussion de la variation de la perte thermique d’une ailette dont la temperature 
de base est T = T, +a cos”’ (n//21), 0 $ m < 5, et dont les coefficients de convection sont constants 
mais difftrents. Le domaine des parametres sont 0 < & < B, < I, B, = 0,Ol ; 0.1 ; l,O, oti B, et B2 sont 
respectivement les nombres de Biot des surfaces au sommet et au pied. Un critere (perte thermique avec 
ailette superieure ou egal a trois fois la perte sans ailette) est utilise pour discuter l’efficacite de I’ailette. 
Les resutats sont : (I) la perte thermique de I’ailette decroit quand m augmente, a > 0 : (2) le nombre de 
Biot au sommet n’est pas un facteur important pour la perte si B, et B? sent grands; (3) quand a augmcnte 

(m constant) la perte thermique croit a peu prts lineairement. 

EINFLUSS EINER VERANDERLICHEN FUSSTEMPERATUR AUF DIE 
WARMEABGABE EINER THERMISCH NICHT-SYMMETRISCHEN RIPPE 

Zusammenfassung-Es werden die Schwankungen der Warmeabgabe an einer Rippe dargestellt, deren 
Fufitemperatur gemlI3 T = T,+a COS”’ (rry’/2[), 0 6 m < 5 schwankt, wlhrend die Warmeiibergangs- 
koeffizienten bei Konvektion zwar konstant, aber unterschiedlich sind. B, und B, sind die Biot-Zahlen 
an den oberen und unteren Oberflachen, sie schwanken innerhalb 0 < B, $ B, < 1, wobei B, = 0,Ol; 
0,l und 1,O. Der Rippenwirkungsgrad wird mit Hilfe eines Kriteriums zur Rechtfertigung von Rippen 
diskutiert: danach sol1 die Warmeabgabe mit Rippe wenigstens dreimal so groB sein wie die Warme- 
abgabe ohne Rippe. Als Ergebnis wird festgehalten: (I) die Warmeabgabe von der Rippe nimmt mit 
wachsendem m ab, a > 0; (2) die Biot-Zahl an der Rippenspitze beeinfluljt die Warmeabgabe fur gro5e 
Werte von B,, BZ nur gering: (3) die Warmeabgabe nimmt fur konstantgehaltenes nt mit wachsendem a 

fast linear au. 

BJIIGIHHE M3MEHEHMR TEMHEPATYPbI Y OCHOBAHMX HA TEI-IJIOI-IOTEPW 
TEPMMgECKH HECMMMETPMgHOFO PEEPA 

AtmoTamd6cymaeTcn H3MeHeme Tennonorepb pe6pa;reMnepaTypa y OCHOBaHHa ~o~oporo coc- 

TaBmeT T = T, + (1 COSm(ny'/21),0 d m < 5, a KO!+hnnReHTblTenJtOO6MeHa IIBJIlllOTCP nOCTOBHHbIMW, 

HO uepaaHbIh4u. HccnenyeMbIe napaMeTpbl u3MeHnmTca a miarxa30Hax 0 < B, < B, < 1, B, = 0,Ol; 0.1; 
l,O, me B, H B,-nncna 6wo COOTB~TCTB~HHO BepxHel H HBXHefi uoaepxaocTeii. KpeTepufi o6oceoaa- 
HHI~ BbI6OpaT~~ape6pa(TeILJIOIIOTepHpe6pa BT~H UJIH Tpe CJIUIUHHM pa3a 6onbme,lreM B CnyXae 6e3 
pe6ep) HcnonbsyeTcn AJIS aHaJm3a ero S$@XTBBHOCTW. nOny%x#bI CneAyKqHe pe3ynbTaTH: (1) Tenno- 

noTepA pe6pa yMeHbIuamTC% C pocro~ 3HaSeHm m,a > 0;(2)~cno 6~0 y Bepwisbl pe6pa He OKa3bI- 
naer cyqecrsemtoro anumiun Ha TennonoTepe npn 6onbmex 3Havewinx B, B B, a (3) c yaenuseHseM 

3Havemin u (npu noCT011~H0h4 3HaqeHm m) Tennonorepw eospacraior nO9Tn neaeho. 


